
	
	
	
	

1	

Little Vampire

Glucometer

Documentation

Electrical Engineers:
Michael Williams

Matthew Henne

Christopher Homa

Mechanical Engineer:
Ishmael Amegashie

Software Engineer:

Sofyan Saputra

	
	
	
	

2	

Table of Contents

3. Introduction	 ..	 4	
3.1 Problem Statement and Proposed Solution	 ..	 4	
3.2 High Level Description of Solution	 ...	 5	
3.3 Meeting Expectations	 ...	 7	

4. Detailed System Requirements	 ..	 7	
4.1 Overview of Final Glucometer System Requirements	 ..	 7	

4.1.1 General Features	 ...	 7	
4.1.2 Hardware Design	 ...	 8	

4.2 Overview of LCD System Requirements	 ..	 8	
4.3 Overview of Bluetooth System Requirements	 ...	 8	
4.4 Overview of EEPROM System Requirements	 ...	 8	
4.5 Overview of Software System Requirements	 ...	 8	
4.6 Overview of Mechanical System Requirements	 ..	 10	

5. Detailed Project Description	 ..	 10	
5.1 System Theory of Operation	 ..	 10	
5.2 System Block Diagram	 ...	 14	
5.3 Design and Operation of Glucometer Subsystem	 ..	 14	

5.3.1 Reading the Test Strip	 ...	 14	
5.3.2 Temperature Sensing	 ...	 17	
5.3.3 Determining the Regression Formula	 ..	 18	
5.3.4 Timestamp	 ..	 23	

5.4 Design and Operation of LCD Subsystem	 ...	 24	
5.4.1 Subsystem Overview	 ..	 24	
5.4.2 Subsystem Design	 ...	 24	

5.5 Design and Operation of BLE Subsystem	 ...	 27	
5.6 Design and Operation of EEPROM Subsystem	 ...	 28	
5.7 Design and Operation of Software Subsystem	 ..	 32	

5.7.1 Database and Skeleton Interface	 ...	 32	
5.7.2 Bluetooth Integration	 ...	 36	
5.7.3 Data Analytics and App Visuals	 ..	 38	

5.8 Design and Operation of Mechanical Subsystem	 ...	 41	
5.8.1 Main Design	 ...	 41	
5.8.2 Lancing Device	 ..	 41	
5.8.3 Test Strip Cartridge	 ...	 43	

5.9 Design and Operation of the Lancing Device	 ...	 43	
5.9.1 Requirements:	 ..	 43	
5.9.2 Approach:	 ...	 43	
5.9.3 Challenges:	 ..	 44	

5.10 Power	 ..	 49	
6. System Integration Testing	 ..	 50	

6.1. Subsystem Integration Testing	 ...	 50	
6.1.1 Hardware Subsystems	 ...	 50	

	
	
	
	

3	

6.1.2 Software Subsystems	 ...	 51	
6.2. Design Requirement Demonstration	 ...	 52	

7. User Manual	 ..	 53	
7.1 Hardware	 ..	 53	
7.2 Lancing Device	 ..	 54	
7.3 Software	 ...	 55	

8. To-Market Design Changes	 ..	 57	
8.1 Software	 ...	 57	
8.2	 Hardware	 ..	 58	

9. Conclusions	 ...	 59	

10. Appendices	 ..	 60	
Appendix A. Hardware Schematics and Board Layouts	 ...	 60	

A1. Top Board	 ..	 60	
A2. Bottom Board	 ...	 62	

Appendix B. Microcontroller Software Reference	 ...	 64	
Appendix C. App Software Reference	 ..	 64	

C1. Programming Languages	 ..	 64	
C2. Integrated Development Environments (IDEs)	 ...	 65	
C3. Miscellaneous Software	 ...	 65	

Appendix D. Electrical Parts Data Sheets	 ...	 65	
D1. Glucometer & General Parts	 ..	 65	
D2. Bluetooth Low Energy	 ...	 66	

Appendix E. Mechanical Parts Data Sheets	 ...	 67	

	

	

	
	
	
	

4	

	

	

	

	

	

	

	

	

	

	

3. Introduction
The world is becoming more connected everyday. People are using technology to

monitor everything from their activity to their diets. We want to design a marketable

diabetes blood glucose monitor that connects to any smartphone through Bluetooth and

also combines three products (glucometer, lancing device, and test strip cartridge) into

a single compact device. This will bring blood glucose monitoring to the 21st century

and makes the lives of diabetics easier.

3.1 Problem Statement and Proposed Solution
Diabetics need to monitor their blood sugar on a regular basis and deliver insulin or

glucose to their body since it does not do this naturally for them. Controlling diabetes is

hard and requires constant attention. Part of this difficulty stems from the fact that it can

be tough to remember the last time you took a blood sugar or gave insulin. If you are a

newly diagnosed diabetic, this is extremely difficult, especially for young

children. However, remembering is the least of a diabetics worry. They have to

remember to bring their blood glucose monitoring kit, which includes a glucose monitor,

test strips, a lancing device, alcohol cleaning pads, and something to record their blood

sugar. All which are easy to forget and may require maintenance or replacement, not to

mention they all must be carried and are bulky. The day in the life of a diabetic is

	
	
	
	

5	

consumed with managing their disease. We want to help free up some of the worry with

our blood glucose monitoring system, which will be compact, connected, easy to use,

and hard to forget.

Our solution focuses on providing an all-in-one device to measure and manage blood

glucose levels. Our device will include a lancing device, a glucose meter, and a test

strip cartridge, all of which will attach to existing insulin pens. The result is one single

device that diabetics will carry with them, as opposed to the current solution where they

are responsible for three separate devices – lancing device, glucometer, and pen. This

device will also enable users to upload their readings to a mobile app. This allows for

easy tracking of glucose levels over time and also provides a platform for sharing

reading data with doctors or, for children, parents.

3.2 High Level Description of Solution
Our solution contains two main components – hardware and software. The hardware

component consists of a watch-like device that contains the glucometer, lancing device,

and test-strip holder. There are five main subsystems for the hardware component.

These are listed below, along with a brief description for each:

• Glucometer

o The glucometer primarily consists of an ADC that samples voltage levels

over a short time period and an associated regression algorithm to

calculate glucose levels. A temperature sensor is also used because the

regression algorithm is temperature-dependent.

• User Interface

o This device has a user interface of 2 buttons and an LCD screen, and the

buttons are used to guide the user through the process of measuring

glucose levels and then connecting and transferring to a smartphone.

• Bluetooth Low Energy

	
	
	
	

6	

o An nRF8001 is used to provide Bluetooth Low Energy functionality to the

device, enabling saved readings to be sent to a smartphone and

submitted to a database for each user.

• EEPROM

o An EEPROM is used to store data on the device before transferring it to a

smartphone. The main pieces of data stored in the EEPROM are the

current time, which can be displayed on the LCD, glucose readings, and

the timestamps of readings.

• Casing and Mechanical Components

o The mechanical aspect of this project is important because size is a main

consideration. The lancing device, therefore, was planned to be as small

as possible while the size of the casing is more dependent on the size of

the boards that must fit inside of it. In the end, a lack of precision in the 3D

printers prevented a lancing device of the desired size from being made,

but the current design is capable of being scaled down. A wearable watch-

like design for the casing was decided on in order to more easily fit the

size requirements of our boards and to be more easily transported and

kept track of by the user.

Similarly, there were three main subsystems for the application software component,

listed and described below.

• Database and Skeleton Interface

o An online database was created to store glucose readings and enable

user access via mobile application. Each user has her own database, and

a login system is implemented to password-protect database access.

• Bluetooth Integration

o Bluetooth Low Energy APIs are used to send and receive data between

the device and smartphone. The smartphone receives glucose readings

and their associated timestamps and sends the current timestamp to the

device in order to update the clock and maintain clock precision.

• Data Analytics and App Visuals

	
	
	
	

7	

o Data analytics and visualization is implemented in order to improve user

comprehension of his or her glucose reading data. The user can adjust the

timescale of data that she is viewing, and also filter it based on activity

performed prior to reading. Summary statistics are displayed in order to

provide a quick summary of the data for the selected time range.

3.3 Meeting Expectations
While there is certainly room for improvement, which will be discussed in the ‘To-Market

Design Changes’ section, we were successful in building an initial prototype for the

device. All functional requirements were met, and the glucometer performed well in

measuring glucose levels during tests with a solution of a known glucose level. One

area where initial design goals were not met was the size factor, but for an initial

prototype we believe we are in a good position to improve on this.

4. Detailed System Requirements

4.1 Overview of Final Glucometer System Requirements

4.1.1 General Features

• Glucose measurement range: 20 mg/dl to 600 mg/dl (1 mmol/l to 33 mmol/l)

o Measure current from testing strip

o Convert current to voltage

o Amplify voltage

o Analog to Digital Conversion interface on the microcontroller

§ Test result is displayed within five seconds

o Convert digital voltage to associated glucose level

• Automatic storage of last 32 glucose readings with date and time stamp on

internal EEPROM

• No test strip coding: Generic regression equation will be implemented and can be

modified based on the test strip characteristics

	
	
	
	

8	

4.1.2 Hardware Design

• Number of boards: Double Board

• PIC16LF1782-I/SS Device: 28-pin device

• Test strip connection: Terminals/connector provided

• RTCC (using internal Timer1): Date and timestamp for the glucose meter

• Internal EEPROM:

o Record last 32 readings of the glucose meter

o Store any parameters or calibration data related to the test strip

• Test strip sensing: To detect insertion of the test strip

• Temperature sensing: Provision given to consider temperature variation for the

glucose calculations. If relation between the temperature and the glucose

concentration is known, it can be incorporated in the regression equation to take

care of any changes in the glucose concentration due to temperature variations

4.2 Overview of LCD System Requirements
• Display glucose level from glucometer

• Display user prompts to cycle through glucose reading procedure

• Serial connection to microcontroller

4.3 Overview of Bluetooth System Requirements
• Establish connection between smartphone and device

• Transfer glucose reading and associated timestamp from device to smartphone

• Receive timestamp from smartphone in order to update device clock

4.4 Overview of EEPROM System Requirements
• Store current timestamp

• Store each glucose reading and associated timestamp

• SPI connection to microcontroller

4.5 Overview of Software System Requirements
• Online database to store each user’s glucometer readings

	
	
	
	

9	

o Storage is located on Parse.com servers through their cloud platform.

Parse specializes in data storage for mobile and web applications.

• Reading Bluetooth data into a mobile or computer device
o Utilize Bluetooth APIs in order to acquire data from the Bluetooth device,

which will send glucose readings from the glucometer into a mobile or

standard computer platform.
o Create an application which will be able to initiate a Bluetooth connection

between the chip, receive data from the chip, and process the data

• Automatically storing glucose readings from Bluetooth into the database
o Being able to automatically route all readings from the glucometer to the

device mobile application and then into online database.
o Readings will come with a timestamp and identify the user who is storing

the current reading. It will also allow the user to store the activity they

completed prior to and after the reading.
o Upon data upload, the user will be notified. If for whatever reason (data

corruption, lack of connection, and so on) the data cannot be uploaded

into the Parse database, the user will also be notified
o If no internet connection is available to upload the data, then the values

will be stored in a buffer on the phone. All the values in be uploaded in

bulk when internet access is available and the upload button is pressed.

The upload button will clear the data buffer once it is uploaded.

• Web interface for users to interact with their data
o A web interface conveniently available from both mobile and standard

computer platforms for which users can view and analyze their glucometer

readings

• Login Interface to identify unique users

o To get into their individual web dashboard, each user will need to login

into their service, so the database can identify what data to pull for the

user

o Login will be completed through a trusted and secure third-party service

	
	
	
	

10	

§ Parse’s automated simple login service

§ All passwords in Parse’s users table is properly hashed and hidden

• Analysis features on the web interface

o Line chart detailing glucose readings over time intervals

o Ability to filter the chart based on day, week, month, and so on

o Daily, weekly, and monthly average of readings

o Warning indicators for abnormal glucose readings in the form of upper and

lower limits of glucose readings as well as percent of readings within

acceptable range.

4.6 Overview of Mechanical System Requirements

5. Detailed Project Description

5.1 System Theory of Operation
The Glucometer Smartwatch functions on many different levels: the digital part of the

watch, the mechanical part of the watch, and the Smartphone app.

The mechanical design was made to supply the diabetic with a compact design to carry

all the long-lasting parts of their testing system, which includes the lancer and

glucometer (see note). As will be explained in section 5.8, the design of the mechanical

system integrated these two parts by a simple attachment to the Smartwatch on one

side of the case. When the diabetic needs access to the lancer, they simply remove it

and use it to prick their finger for their test.

NOTE: For detailed instructions on how to use the device, refer to section 7.

Furthermore, for future considerations involving the theory of operation, refer to section

8.

	
	
	
	

11	

The digital part of the Smartwatch includes a glucometer, a LCD, a Bluetooth Low

Energy (BLE) chip, two buttons, and EEPROM memory. The following finite state

machine flowcharts were created to integrate all the various electrical parts together.

As shown, the LCD screen is used to display the commands necessary for the diabetic

to take their blood sugar as well as displays the results. The BLE chip is used to

integrate the blood sugar reading from the result of the glucometer circuit and send it to

the Smartphone app. The Smartphone app then is used to display the reading as well

as allow the user to log more information regarding the reading just taken, such as

before exercise or after eating. The app can also be used to show various graphs so

the diabetic can visualize their blood sugar readings (more information provided in

section 5.7).

	
	
	
	

12	

Figure 5.1.1. Display Previous Readings FSM

SLEEP

BUTTON 2 PRESSED

Loading Data...

EEPROM Read

Blood Sugar Level

BUTTON 1 PRESSED

Timeout = 10 s

Next Reading

Last
Reading?

NO YES

BUTTON 2 PRESSED

First
Reading?

NO

Previous Reading

YES

FINITE STATE MACHINE - DISPLAY PREVIOUS READINGS

	
	
	
	

13	

 Figure 5.1.2. New Blood Sugar Reading FSM

BUTTON 2 PRESSED

Add Blood

ADC READvalue < 0.95V

 Timeout = 60 sGOING TO
SLEEP

SLEEP

BUTTON 1 PRESSED

Insert Test Strip

value > 0.95V

WAIT 1.1s
(FOR

CHEMICAL
REACTION)

Read Blood Sugar

Blood Sugar
Reading

EEPROM STORE
DATA

Bad Reading

voltage < 1.15V

EEPROM READ
ALL DATA

BLE Initialization
and Connect

Timeout = 30 s

Press Button To
Transfer

Connecting...

Connected

BUTTON 2 PRESSED

Transfer n data
and n timestamp

Tranferring
Index n <= data array size

Transferred

Clear EEPROM
Blood Glucose
Data History

Blood Sugar
Reading

Timeout = 30 s

FINITE STATE MACHINE - NEW BLOOD SUGAR READING

	
	
	
	

14	

5.2 System Block Diagram
	

5.3 Design and Operation of Glucometer Subsystem

5.3.1 Reading the Test Strip
There are many different types of test strips available on the market. However, our

requirement is for the glucometer to be low cost. Therefore, we have decided to

proceed with Unistrip Generic Test Strips, which are some of the cheapest test strips

available on the market to date. There are three electrodes associated with this test

strip: working, counter, and reference. The generic general design of the test strip and

the associated electrical circuit is shown below:

	
	
	
	
	

	
	
	
	

EEPROM	

nRF8001	

Test	 Strip	

Differ
ence	

ADC	 &	
Regressio

Tim
er	

Battery	

Finite	 State	
Machine	

Buttons	

LCD	 	 	

Current-‐to-‐
Voltage	
Converter	

Mobile	
Application	

	
	
	
	

15	

Figure 5.3.1.1. Glucometer Amplification Circuit

The electrodes can be described as:

• Working electrode: Electrons are produced here during the chemical reaction.

This electrode is connected to the current-to-voltage amplifier.

• Reference electrode: Held at a constant voltage with respect to the working

electrode to push the desired chemical reactions.

• Counter electrode: Supplies current to the working electrode.
The Reference Electrode is set at a specific reference voltage (VRef) while the Working

Electrode is set at a specific bias voltage (VBias). This way there is a precise voltage

drop across the working electrode and the reference electrode. The voltage drop

between the Reference and Working electrodes drives the test strip’s output current.

The magnitude of the output current correlates to the number of electrons produced by

	
	
	
	

16	

the chemical reaction of oxidizing the blood. The flow of electrons will correspond to the

flow of current through the working and the reference electrode and will change based

on the glucose concentration in the blood. As shown in Figure 5.3.1.1, the current

output from the test strip is connected to a transimpedance amplifier, which acts as a

current-to-voltage converter. The output of this operational amplifier will be then

connected to a difference amplifier circuit. The output of this operation amplifier

measures the voltage above VBias as well as amplifies the difference by a gain of two.

This is important as it allows the ADC readings to have a broader range and ultimately

makes the glucometer more accurate. The final part of the circuit is a simple low pass

filter to get rid of any noise associated from the test strip, electrical circuit, and operation

amplifiers. This results in the final output of the circuit as a voltage level, which will be

fed into the microcontroller’s ADC. As will be described in part III, the regression

formula will then correlate the ADC voltage level to a specific blood glucose level.

Figure 5.3.1.2. Oscilloscope Voltage Readings When Blood Sugar Was Applied to
Test Strip

In order to ensure that the circuit setup works, the voltage output of the circuit was

hooked up to an oscilloscope. With a test glucose solution providing a low blood sugar

between 30 mg/dl to 60 mg/dl, the expected voltage outcome is high due to the fact that

a low blood sugar correlates to less current being able to flow between the electrodes

since less electrons will be produces. Thus, the oscilloscope output shown in Figure

	
	
	
	

17	

5.3.1.2 above and on the left shows a high voltage difference of 2.040 V, which

correlates to the lower range of expected current outputs and higher range of the

associated resistance. Figure 5.3.1.2 above and on the rights shows the reading after

the glucose test solution was saturated with sugar. The oscilloscope voltage difference

is very low, correlating well to a blood glucose level that is high. Therefore, we can

conclude that the designed circuit serves it purpose well and will be used in the final

design of the glucometer. Further explanation and oscilloscope printouts will be in the

proceeding section on finding the regression formula.

NOTE: The time to start capturing the ADC values will be after 1.1 seconds to allow the

reaction to take place and settle at it’s peak value. As seen in the oscilloscope

readings, the reaction settles at a peak around this time for up to 5 seconds before it

exponentially decays after the reaction has completed. Multiple ADC values will be

taken and the max of the ADC readings will be used for the voltage level.

5.3.2 Temperature Sensing
The temperature sensor was included in the final design because it provides the ability

to make the blood sugar readings more accurate over varied temperature ranges. We

chose to use a low-power linear thermistor IC because it coupled low power while

remaining compact, fitting well within our goal of a low power and compact glucometer.

Shown below in Figure 5.3.2.1, the thermistor IC has three pins: Vdd, GND, and Vout.

Figure 5.3.2.1. Thermistor IC Pinout Diagram

	
	
	
	

18	

Pin 1 (Vdd) was connected to 3.3V. Pin 2 (Vout) was connected to an ADC input pin on

the microcontroller. Pin 3 was connected to ground. The thermistor voltage value was

read in as a voltage level and converted to a temperature in Celsius using the following

formula and DC characteristics provided in the data sheet:

𝑇! = (𝑉!"# − 0. 5𝑉)/ (.010 𝑉/℃) Equation 5.3.2.1

A limitation of this first prototype was the inability to have the glucometer tested in a lab

meant to handle accurate blood sugar tests. Therefore, the temperature sensor’s data

was not included in the regression formula, as the effect of temperature on test strips

was not made available on the Internet. The sensor was still included in the final design

since it would be needed for accuracy if this prototype was taken beyond Senior Design.

5.3.3 Determining the Regression Formula
Determining the regression formula was not an exact science because we were limited

by our lack of access to a fully equipped testing laboratory. To perform the test for the

regression formula we used Level 1 and Level 3 UniStrip Control Solution. A diabetic

uses the control solution to calibrate the glucometer for every new cartridge of test strips

they open. We used it to provide us a low blood sugar reading approximation (Level 1),

a high blood sugar approximation (Level 3), and a medium blood sugar reading by

combining the two solutions. The trials recorded the oscilloscope voltage responses

after each solution was applied to the test strip, shown in the figures below.

	
	
	
	

19	

Figure 5.3.3.1 High Control Solution Oscilloscope Voltage Responses

	
	
	

	
	
	
	

20	

Figure 5.3.3.2. Low Control Solution Oscilloscope Voltage Responses

	
	
	
	

21	

5.3.3.3. Medium Control Solution Oscilloscope Voltage Responses

	
	
	
	

22	

The data was then recorded in Table 5.3.3.1 below.

	
	

Table	 5.3.3.1.	 Glucometer	 Voltage	 Response	
	
The glucose value approximation was determined by taking the average value in the

range supplied by the control solution. Level 1 was had the range 40-85 mg/dl. Level

3 had a range of 240-340. Adding one drop from each control solution and averaging

the value between them determined the medium value. The following graph was

created to better visualize the data collected and to determine a best-fit regression

formula. The best-fit trend line was determined using a natural logarithm fit.

	

	
	

y	 =	 262.25ln(x)	 +	 407.24	
R²	 =	 0.9319	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	 0.2	 0.4	 0.6	 0.8	 1	 1.2	 1.4	

Gl
uc
os
e	
Va
lu
e	
(m
g/
dL
)	

Voltage	 (V)	

Glucometer	 Voltage	 Response	

Glucometer	 Voltage	 Response	 (V)	
Glucose	 Level	 High	 (Level	 3)	 Med	 (Level	 1	 and	 3)	 Low	 (Level	 1)	
Trial	 1	 624	 332	 276	
Trial	 2	 692	 404	 316	
Trial	 3	 668	 360	 292	
Average	 0.661333333	 0.365333333	 0.294666667	
Glucose	 Value	 290	 mg/dl	 176.25	 mg/dl	 62.5	 mg/dl	

	
	
	
	

23	

	
Therefore the following equation was used in the code to convert the ADC voltage

readings to a blood sugar reading.

	
𝐵𝑙𝑜𝑜𝑑 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐿𝑒𝑣𝑒𝑙(

𝑚𝑔
𝑑𝑙) = 262.25 (

𝑚𝑔
𝑑𝑙) ∗ ln 𝑉!" + 407.24 (

𝑚𝑔
𝑑𝑙)	

5.3.4 Timestamp
The timestamp is important so that the blood sugar readings can be recorded and

stored in the EEPROM memory chip in case the user is unable to connect to their

Smartphone (phone’s battery is dead, forgot their phone, etc.). The team decided to

use the RTC module within the microcontroller, however when the board design was

done, it was not included. Therefore, a different solution needed to be worked out.

The best solution was to use the Smartphone’s clock accuracy to set the clock on our

Smartwatch. The procedure for this is described in detail in the Bluetooth Low Energy

section of the subsystem documentation (section 5.5). Once a UNIX Timestamp was

received from the Smartphone, it was stored in the EEPROM. The internal clock (Timer

3) of the microcontroller was used to count at a rate of one pulse every 60 seconds,

which was done by raising the timer flag when the system clock had counted to the

hexadecimal number 0x23C364 and then creating an interrupt. The count would then

update the timestamp in the EEPROM. Since the diabetic is expected to use this

system at least 5 times a day, the clock should remain accurate as it is set based on the

phone’s clock after each reading. This works in the idle low power mode since the

system clock remains running during that mode. Ideally by using the RTC module, we

would have been able to put the microcontroller into sleep mode, the lowest power

mode available. This would significantly extend the battery life of our smartwatch.

	
	
	
	

24	

5.4 Design and Operation of LCD Subsystem

5.4.1 Subsystem Overview

The main purpose of the LCD screen is to give the user an easy and comprehensive

way to interface with the glucometer without the use of the smartphone app. The main

functions of the LCD screen are as followed:

● Give the user basic instructions for controlling the glucometer. This includes

basic commands to guide the user through the process of taking a glucose

measurement.

● Offer real-time glucose results. The LCD will need to be able to display glucose

reading shortly after taking a measurement without the aid of a smartphone

● Review past glucose readings. The glucometer will store several past glucose

readings until they are able to properly upload to the user’s smartphone, via

Bluetooth. LCD screen will need to provide a way for the user to review these

past readings.

● Give the user a unique, enjoyable experience. We don’t want out LCD to just be

a basic, boring screen. We want to give the user an experience that sets our

product apart from the competition. This will be done with clear commands,

easy-to-use interface, and animations.

5.4.2 Subsystem Design

Our glucometer’s main selling point is that it is a small, compact, easy-to-carry

measurement device with an all-in-one design to reduce the hassle of traveling with

several components. Therefore, several different factors come into play when deciding

what LCD is best for our glucometer:

● Small, compact size

○ The LCD screen must fit within our compact design.

● Quick interface with the microcontroller

○ The LCD must be able to quickly talk to the microcontroller with very few

wires to conserve space.

● Readability

	
	
	
	

25	

○ The desired screen should be able to show several words on the display

at once, while still being easily read from an arm’s length away. This

implies that with a small screen, the resolution with have to be fine enough

to clearly fit many words on the screen.

● Provide a unique experience

○ The desired screen should be high quality and will enhance the user

experience.

We originally chose the SSD1306 OLED screen because we thought it best suited our

needs listed above. The LCD screen was 0.66 inches across with a small breakout of

board retrofitted by Sparkfun that would have aided in development. The breakout

board was planned to be replaced in the final design and put into the final PCB board in

order to optimize space. That OLED screen had a 64x48 dot matrix, but for its small

size, it provided a clear, crisp picture. This would have allowed us to fit several words

onto the screen at once and even do animations if we desired. The board came with the

versatility of communicating with the microcontroller via SPI or I2C.

We chose to use SPI for a few reasons. First, we are most familiar with SPI. We have

worked with it more during our previous semester during our several assignments.

Also, the read/write protocols are much are simpler than I2C. Third, SPI is much faster,

which we felt to be very important to the overall user experience. We wanted our LCD

to update as quickly as possible. This could allow us to add animations and other

design features to our board. In addition, it allows the code to proceed to the Bluetooth

stage, which can benefit from any additional speed for quick connections and data

transfers. While SPI does require an extra wire, we felt that the simplicity and speed of

SPI outweighed the extra space, which was not detrimental to our board size in the end.

The OLED screen from Sparkfun did not work for us. The main problem was that the

code that accompanied the breakout board was written from an Adafruit controller.

Since we were using a PIC microcontroller, this would not work. I studied the datasheet

for the SSD1306 controller and found out how to set up the initialization of the screen

through a series of byte instruction sets, but I had no code for actually setting what I

	
	
	
	

26	

wanted to show up. I explored writing a bitmap to the screen, but without proper

functions to transfer text into bitmaps, it would be impractical to write my own bitmaps.

Next we explored other code already written for an SSD1306 controller. We found one

that was suitable for us and fairly easy to understand, and began testing this code.

However, we had trouble implementing the code to work properly for our screen. The

biggest problem was that the bitmapping code was written for a screen 128x48, so it

would not display properly on the screen, and there were few functions written for

formatting the display. For this reason, we decided to search for other solutions for our

LCD subsystem.

The LCD screen we settled on was a PmodOLED screen found on Digilent Inc.’s

website. The screen is a 128x32 pixel 0.9” display with a 15 pin ribbon attaching to a

breakout board containing a 12 pin, 6 by 2 header hookup. We chose this for a few

reasons. First, it came from the suggestion of our professor who already had some

available for us to start testing and implementing immediately. This was crucial

because we were already behind schedule due to all of the obstacles of the previous

screen. Second, the website provided code and breakout board schematic for easy

implementation into our system. Functions were already written to properly format the

text size and placement on the screen, as well as textual animations that enhance the

overall user experience. In addition, the schematic for the breakout board made it easy

to adapt the LCD screen onto our final PCB design. There was some initial concern

about the ratio of the screen size. With its thin rectangular shape, it would not have

worked well with our initial pen cap design. However, when we made the decision to

change our design to a watch, it fit in perfectly. The slender screen now allows room for

the lancing device to lie adjacent to it without bulging out of the user’s wrist.

In the end, the code implementation was pretty straightforward. The difficulty with the

code was that it tried to be more universal by using the pilb.h file. This file was written

to help the designer adapt the screen for any pic controller. The problem with that was

	
	
	
	

27	

that it had difficulty dealing with pic32 controller. Essentially what I had to do was dig

into the code and remove all uses of plib.h and add my own code written specifically for

our pic32 controller. This meant removing all calls of strange #define variables used in

plib.h with my own that called for the specific bits used in our pic32. In addition I

adapted the initialization and SPI send functions that we used previously for this code.

5.5 Design and Operation of BLE Subsystem
The nRF8001 from Nordic Semiconductors was chosen for the Bluetooth Low Energy

subsystem. This chip was chosen due the availability of an Adafruit breakout board for

testing and prototyping, and also because the nRF is relatively ubiquitous in BLE

applications and therefore has a robust community following, which was helpful in

development. A sample program, ble_A_Hello_World_Program.c, and the associated

libraries were also provided.

As listed above in system requirements, the BLE subsystem had three main functions –

connect device and smartphone, transfer readings, and receive an updated timestamp.

To this end, three functions were written: ble_connect(), ble_transfer(), and

receive_timestamp().

After the BLE subsystem is powered on, it begins to advertise and waits for a device to

connect. While this is occurring, ble_connect() returns false. After connection is

established, the ACI event ‘ACI_EVT_CONNECTED’ is received, ble_connect() returns

true, and data transfer begins using ble_transfer(). Ble_transfer() loops until no ACI

events occur, and then sends the data via UART. While looping, ble_transfer() returns

false. Upon transfer, ble_transfer() returns true, and the system knows that the selected

reading has been successfully transferred to the smartphone. Ble_transfer() and

ble_connect() are located in the ble2.h header file.

Receive_timestamp(), found in the poorly named send_timestamp.h, returns a Unix

timestamp sent from the smartphone. When called, the function waits for the ACI event

‘ACI_EVT_DATA_RECEIVED‘, buffers the received value, and converts it from a char

	
	
	
	

28	

string to an integer. Unix timestamps are always 10 digits long, so the received data is

truncated at 10 chars, which are converted to a string of ints and then concatenated.

The design challenges associated with this subsystem were predominantly related to

understanding the extensive code provided and altering it to suit the needs of our

system. The original ble_A_Hello_World_Program.c program operated in a continuous

loop, so there was no need to return any values depending on which ACI events were

received by the nRF. As a result, the aci_loop() function needed to be rewritten to return

different indicators depending on ACI events. These indicators were also different for

the different functions, so the aci_loop() function was duplicated and tailored to each

function.

5.6 Design and Operation of EEPROM Subsystem
The EEPROM that we chose was a 25LC128, the same one we used in our class. We

chose this memory device mainly because we had already worked with it and had SPI

code already written for it, but also because it fit all of our needs. The EEPROM has a

16,384 x 8-bit organization. This means that it has 16,384 memory locations that hold 8

bits each, or one byte. 16,384 is 2^14 meaning that the addresses for this EEPROM

are 16-bit (2 bytes) address with the 2 most significant buts being “do not care” bits.

The values that we store within the EEPROM are integers, and in a pic32 this means

that all integers are made up of 32 bits, or 4 bytes. For that reason every memory

location that we set up was a series of four locations. The 25LC128 works great for this

because it allows up to a 64-byte page to be written at once. And with 2^14 locations,

we could technically hold over 4,000 readings at one time, but for practicality reasons

we chose to limit that number. The overall speed of our system would be reduced if we

chose to deal with every memory location.

The memory bank setup can be seen below. The memory “TIME” refers to the unix

timestamp that we receive from the smart phone through the Bluetooth. This timestamp

is the value that our counters use to give accurate timestamps on readings when no

connected to Bluetooth. The next two spots are the current reading value and

	
	
	
	

29	

timestamp. This will be the value that will be available for review from the LCD screen.

These spots will be automatically updated every time a new blood glucose reading is

taken. The following spots are a counting or memory values and timestamps. These

spots are reserved for blood glucose readings that need to be saved because the

Bluetooth was unable to connect to the smartphone app and transfer the data. There

will be a limited number of spots, but they will be cleared after values are successfully

transferred to the user’s smartphone.

Table: EEPROM Memory Bank Setup

Memory
Location Memory Name

1

TIME
2

3

4

5

Current Reading
6

7

8

9

Timestamp of
Current Reading

10

11

12

13

First Memory
Location

14

15

16

	
	
	
	

30	

17

First Memory
Timestamp

18

19

20

21

Second Memory
Location

22

23

24

Several functions were written for the EEPROM:

• EEPROM_init() = initializes the SPI on the pic controller and sets the appropriate

bits, as well as sets the CS pin as an output.

• EEPROM() = basic function to send data through the SPI. It clears the interrupt

flag, fills the SPI transfer buffer, waits for the buffer to clear, and returns the data

received from the MISO.

• EEPROM_wait() = function to wait for the EEPROM to finish writing. It

continually reads the status register and checks to see if the writing-in-progress

bit (WIP) goes from 1 (still writing) to 0 (not writing).

• EEPROM_write() = function to write an 4-byte integer value to a given address.

The function inputs an integer value and address. It breaks the integer up into 4

bytes and address into 2 bytes (since only the first 14 bits determine the

address). Then goes through the write protocol of enabling write, sending the

write instruction set, sending address, and sending the 4 bytes of the value as a

page.

• EEPROM_read() = function to read the 4 bytes of a given address. The function

inputs an integer address. It breaks the address up into the 2 necessary bytes.

It goes through the read protocol of sending the read instruction set, sends

address, and sends dummy bits in order to receive the 4 bytes through the

MISO. The function then combines the four bytes into an integer and returns the

value.

	
	
	
	

31	

• EEPROM_empty_addr() = function finds the first available address with no value

stored. The function starts at the first memory location and reads the value. It

checks to see if there is any stored value. If there isn’t, it moves on to the next

memory location until it finds an empty value. The function returns the memory

location value.

• EEPROM_clear_MEM() = function clears all of the values stored in the memory

banks. Goes from the first to last memory location writing 0xFF to them. (active

low)

• EEPROM_clear_TIME() = functions clears the TIME memory slot by writing 0xFF

to it.

• EEPROM_clear_current() = function clears the current value and timestamp by

writing 0xFF to it.

• EEPROM_clear_all() = clears all of the EEPROM by calling all three of the

functions.

• EEPROM_new_value() = functions writes a value and timestamp to the current

memory location and first available memory bank slot. Function writes to the

current value and timestamp location, then uses EEPROM_empty_addr to find

an open memory spot, and writes the value and timestamp to that spot

• EEPROM_read_all() = function populates an array with all of the values and

timestamps in the memory bank. The function passes in a pointer and goes

through the memory bank writing the values into the array. The idea is that this

array will be used for data transfers through the Bluetooth.

Future improvements include rewriting the functions to write the value and

timestamps at the same time. By writing a 8-byte page instead of two 4-byte

pages, it eliminates a wait-cycle and would improve the speed of the device.

However, since it is only a few bytes, it may not be needed because the function

already works very quickly. The other improvement would be the

EEPROM_read_all() function because it reads the entire memory bank even if it

is not fully populated. Future improvement would be to create an array with its

size being determined by how many values are actually saved in the memory

	
	
	
	

32	

bank. This would improve the overall speed and efficiency of our device.

However, this may not be needed either.

5.7 Design and Operation of Software Subsystem

5.7.1 Database and Skeleton Interface
The main objective of the software portion of subsystem 1 was to create a backend

database in which to store the data and then allow users to access that data through an

online web interface. This objective is detailed with the following goals:

1. Create a skeleton backend database available for both the web and mobile

platform that will be able to be used to store basic glucometer data.

2. Create login interfaces for the web and mobile platforms and use that to

access each user’s individual database.

3. Have the ability to display tables for the data (sample test data will be used

for the time being) on both the web and mobile platforms.

To achieve the first goal, database-hosting sites needed to be evaluated. After a

meeting with the assistant director of Engineering & Science Computing (ESC), Ya’akov

Sloman, it was decided that Amazon’s Web Services (AWS), which includes a full suite

of database, web, login, analytical, and other services would be used as the

comprehensive service for hosting our entire application. The main advantage of AWS

is its scalability. Building the application on AWS will allow this project to be completed

for the purposes of this class as well as allow it to be fully operational on a larger,

production scale. This is because adding more servers and storage is extremely simple

on the AWS platform. Had this application been built out on a single server containing

all the database and web components, it would be extremely difficult to transition the

application from testing to running for production. Additionally, AWS’ low to non-existent

price point for the purposes of this project is also a tremendous plus.

The below will list, in detail, the components of Amazon’s Web Services that have been

used by our application and how they are used in our application. Following the list of

	
	
	
	

33	

components will be an architectural diagram and explanation detailing how each

component will fit together to build the glucometer database and application.

Amazon Web Services (AWS) Components
Elastic Compute Cloud (EC2): Allows for rapidly scaling the amount of servers. Initially

the glucometer will require few servers—primarily a testing server for our team to

develop—but having the flexibility to easily modify the number of servers will be

extremely important when this product goes live.

Simple Storage Service (S3): The Simple Storage Service will be the backbone of the

data storage of this project. Security features and backup. It claims to be able to easily

store and receive data from not only EC2 and other Amazon services, but also various

sources, which will be especially useful when working with Bluetooth. This is also

scalable, which is critical due to the nature of our project.

MongoDB: NoSQL database service for the basis of this project’s data storage. Data

stored and returned are of JSON format. This database service was selected for its

efficiency and scalability.

Cognito: This will be used for the login service of our application. It is compatible with

authentication services such as Amazon, Facebook, and Google. Google with its Oauth

2.0 service has been selected for our authentication service. As a result users will login

through their Google accounts. This ensures security as Google is a reputable login

source.

Simple Queuing Service (SQS): Message queuing is absolutely crucial for our

application since there can be many simultaneous readings and messages attempting

to be stored or sent. Drastically simpler than having to create our own queuing service.

	
	
	
	

34	

Elastic Block Store (EBS): Snapshots to backup EC2 instances and for launching new

instances that you want to be similar to previous ones. Since this project is dealing with

sensitive medical data that people will not want to lose access to, being able to backup

instances is crucial for maximum uptime.

Lambda: Automatic management of compute resources and allows for rapid response

to new information. Essentially, code in the form of lambda functions will respond to

user events. This may be useful for alerting users based on their glucose readings and

other advanced features.

SNS: Upon acquiring a user base, this can be developed for sending mass messages

to users.

Express: A Model-View-Controller based web tool that assists in developing database

driven web applications. Express is used to for developing the web interface and

connecting the web interface to the database.

Architectural Diagram of how components will interact

	
	
	
	

35	

Figure	 1	 Architectural	 Diagram

Referring to the Architectural diagram in Figure 1, the essential process of the

application will begin with data from the glucometer being passed to the phone through

Bluetooth. A Bluetooth API will be selected and used in order to parse the data from the

Bluetooth into the mobile or computer device. The device will utilize the Cognito login

service in order to authenticate the user and the upload the data onto the Mongo

Database. The Simple-Queing-Service (SQS) will be utilized to queue the data upload

in case the device does not have access to the internet or if excessive web traffic is

congesting the upload. Once the data has been stored into the database, it can then be

accessed by the web interface through NodeJS. The NodeJS development application

being used, Express, is located on an Amazon EC2. Express is used to access the

Mongo Database, query the data, and display it on the web interface. Note that the data

being transferred is in a JSON format and will need to be parsed for usage. The data

and servers stored is backed up by an EBS and stored onto Amazon’s S3 service. In

addition to being useful for backups, it is also useful for copying server instances, so

transferring the application onto different servers is drastically simplified and expedited.

As previously mentioned, the web application is built out using Express, a web

application framework. Express follows an Model-View-Controller (MVC) architecture in

which the database (model) is connected to the HTML pages (views) through the

JavaScript files defined with app.js and other JavaScript files in the routes directory

(controller). The main advantage of using an MVC architecture is that the logic and the

visuals of the application are separated and organized. This allows for much easier

updating of the website if necessary.

	
	
	
	

36	

5.7.2 Bluetooth Integration
This section of the subsystem featured a collaboration between the Bluetooth and

software sides of the product. The main goal of this subsystem was to be able to send a

value from the chip into the mobile device through a Bluetooth connection. In addition to

being able to send a value, the components developed in the first subsystem were

integrated so that once the value had been transferred into the mobile device, it can

then be uploaded into the database. The upload into the database will include the read

value, a timestamp, and the activity performed before and after the measurement.

To achieve the first goal of sending a value through a Bluetooth connection, several

avenues of Bluetooth transmission into a phone were explored. This includes web

application, iOS application, and Android Application. In the end, Android was selected

as it provided consistent data transmission and is a widely used and readily available

operating system.

The main advantage of selecting an Android application to perform the Bluetooth

transmission is that since the application is native it will run significantly more smoothly

and have easier access to the Bluetooth component of the mobile device. Development

in Android can be performed through various means. For this project, Android Studio

was utilized. Android applications are developed through a combination of primarily java

and Extensible Markup Language (XML). Java is utilized primarily for the logic aspect of

the application, although the visuals could also be designed using Java, while XML is

utilized to easily create the layout of each activity (or page) of the application.

Being one of the most popular languages, Java is widely supported, well-documented,

and highly compatible. Additionally, it is an extremely powerful language that includes

many libraries and classes, including the ones necessary for the Bluetooth and

database goals. Java includes a Bluetooth Library which supports scanning for

Bluetooth devices, pairing between devices, and sending and receiving between

devices. This results in a convenient method for interfacing between the board and the

	
	
	
	

37	

application. Additionally, Java supports Parse cloud storage, which will be used to store

the values into the database once the values are read into the phone.

Meanwhile, the main advantage of XML is its simplicity. The Android Studio

development environment provides a visual environment for developing the application.

This visual environment generates backend XML code which is readable and

understandable even to those with little XML experience. The main goal of XML is to

provide a language that is not only understandable by machine, but also intuitive for

humans. XML in Android studio is used to generate the layout of the various activities.

For example, to create a textbox with a button submission in XML, one would select a

view type and then write the button and edit text tags. Each of these tags will have their

settings, but beyond this, no other code is necessary. Everything is handled by Android

Studio and the backend XML. Another advantage of Android Studio is the visual

application designer. Android Studio offers an option to drag and drop widgets and

layouts into a phone. Adding an item into the layout will automatically generate the XML

code, allowing for rapid development. In order to generate Java logic for the items, it is

a simple process of finding the view by ID and then setting a reference to it. In

summary, Android Studio and XML allows for a convenient and simple development

environment, which exemplifies rapid development.

With regards to the interface decisions, the application was kept visually simple for this

subsystem. The beginning of the application prompts the user to log into Parse or

create an account if they do not already have one. Once an account is created, the user

will be directed to the main reading. The main reading page features a button to connect

to the Bluetooth board and a text display that will change to the number once the value

has been transferred. When the value has been transferred, the user can select the

activity they were performing before and after the measurement and a button is

provided to upload the data onto Parse.

	
	
	
	

38	

5.7.3 Data Analytics and App Visuals
The goal of the final software subsystem is to provide data analysis on the data that was

entered into the database. Additionally, this subsystem sought to visually improve the

application by utilizing jQuery mobile for the charts section and performing visual design

on the Android activity pages.

Data analysis on the readings involves generating a time-based line chart of the

readings. The chart can be filtered based on a selected timeframe. The timeframe can

be filtered by preset buttons or a slider for extra precision. In addition to the time filter,

there is also an activity filter. The activity filter allows the user to filter the displayed

readings based on the activity they performed before and/or after taking the reading.

The chart also contains upper and lower limit lines to indicate what readings are in and

out of acceptable range. These lines are signified with a red color. Below the chart are

three crucial summary statistics. These statistics include the average blood glucose

reading, the percent of readings in range, and the average number of readings per day.

Note that all of these statistics are for the selected timeframe and activity filter. The

importance of the time and activity filters is that they allow the user to see improvements

in readings or problems. For example, performing readings after exercising may result

in lower readings and thus the user can see the benefits of exercising. Meanwhile, the

summary statistics provide useful and quick overviews of the data. For example, if the

percent in range is abnormally low, then one can quickly realize they are having issues

and may need to contact a healthcare provider. Also if the average number of readings

is low, then the user can be reminded to take more readings. The average reading

statistic is really useful for finding out the standard reading for a certain time period and

filter selection.

As previously discussed, the Android Application itself is developed by Java and XML.

And thus advancements to the application visuals were all built out by these languages

with one plugin to help generate a connect status visual. Essentially, the login page was

updated so that the edit text fields are centered and has more streamlined label texts.

	
	
	
	

39	

Additionally, a background was added to each page in order to prevent the application

from appearing barren. All of this was done by the default XML features available in

Android Studio. Meanwhile, the reading page also had the same treatment where all of

the labels were more streamlined and an appropriate background for the application

was added. In addition, a circular label was created to more effectively display the

connection status of the application. If the connection is active, then a green check

within a circle will display to indicate an active connection. Otherwise, a red disconnect

circle will appear. This allows for rapid visual identification of the connection status. This

improvement of aesthetics is necessary to create an appealing application which

creates a sentiment of welcoming to users.

On the charts side, the charts were built out using a combination of Google Charts and

jQuery mobile. Google Charts provides the tremendous advantage of being widely

supported and built out in HTML5. Google Charts is well documented with numerous

examples, thus making development much more precise. Additionally, it provides

numerous available charts options for modularity and future additions.

The main advantage of HTML5 is that it is widely supported by mobile devices. As a

result, the chart will have no difficulty appearing on various platforms. HTML5 provides

Cross-browser compatibility (adopting VML for older IE versions) and cross-platform

portability to iOS and new Android releases. Additionally, no plugins are needed. The

lack of plugins is particularly important because numerous non-HTML5 charts require

flash, which is not default installed on phones. As a result, users may receive plugin

errors if a non-HTML5 chart is used.

HTML5 also supports the use of jQuery mobile. jQuery Mobile is a HTML5-based user

interface system designed to make responsive web sites and apps that are accessible

on all smartphone, tablet and desktop devices. It follows the “write less, do more

mantra, where rather than writing unique applications for each mobile device or OS,

jQuery mobile allows one to design a single web application that works on all popular

	
	
	
	

40	

platforms. Another huge advantage of jQuery mobile is the ThemeRoller. The theme

roller makes designing the components of a web app much simpler. The ThemeRoller is

an online interface which allows you to select how your buttons, text, backgrounds, and

so on will look like. After selecting these options, you can download a zip file containing

css and javascript which generates the proper theme. The code it generates can then

be further optimized since you are able to edit them. A huge advantage of jQuery mobile

is that it applies dynamic web development. With dynamic web development, the

appearance of the website will adjust based on the size of your screen. As a result, for

any reasonable screen size, the website will still look great. To use jQuery mobile, all

one would need to do is to include the proper script tag links and then utilize its

functions. See below for code snippets demonstrating its use.

Utilizing Google Charts on a page is a similar process to using jQuery Mobile. To use

Google Charts, merely include the necessary script tags in the HTML header, these are

specified in the documentation, and then include the types of charts you want to use in

the JavaScript code (an example of this can be seen in the code snippets). To set the

data, the addColumn and addRows functions are used in a loop as the data is being

acquired from Parse.

Parse has similar usage to Google Charts in that one needs to begin by adding the

necessary Parse script tags. Once those tags are added, the currentUser function can

be utilized to identify who is currently logged into Parse on this device. With that user

identification, queries can be performed on that user’s table information. As the data is

being retrieved, we add it into the Chart rows which then allows the data to be displayed

on the Charts. Parse was utilized for its simplistic but highly effective database cloud

system. Parse comes with built-in user identification and storage functions as well as a

rapid querying system.

Overall, the combination of Parse, Google Charts, and jQuery mobile makes the charts

page extremely versatile. All of these tools support the use of HTML5 and are very well

	
	
	
	

41	

established and secure. Note that the resulting web app was uploaded onto an Apache2

Notre Dame server located on Amazon Web Services. Apache was selected as the web

server since it is one of the most popular, longstanding, and reliable web server

software. This means there is a wealth of documentation and is compatible with

essentially every operating system. There is also the benefit that it is well maintained

and constantly updated, resulting in an overall secure and feature rich web server

software.

5.8 Design and Operation of Mechanical Subsystem

5.8.1 Main Design

5.8.2 Lancing Device
Lancing devices are one of the key instruments in the successful management of

diabetes. Lancets are small and sharp objects or needles used to prick the skin. This

allows a small drop of blood to surface onto the pierced skin that can consequently be

tested for blood glucose levels. Tools like blood glucose monitors and blood glucose

test strips are used in tandem with the lancet in the testing of blood glucose levels.

While the option does exist for a diabetic to prick himself directly with a lancer, most

diabetics prefer a lancing device. A lancing device, then, is a device that firmly, securely

and safely grips the lancet in a way that allows for the lancing operation to be performed

simply with the click of a button. Lancing devices allow the flexibility of setting the

piercing force based on the thickness of the patient’s skin, with thicker skin requiring a

greater piercing force etc.

Owing to the fact that lancets are to be changed after a single use, lancing devices

need to be designed in an intuitive and robust way, allowing for simple operation and

dependability, especially because of the additional risk inherent in handling sharp

objects.

Current State

	
	
	
	

42	

Since lancers remain largely the same across different manufactures, while lancing

devices do not, the discussion here will be centered more around the lancing devices

that house lancers available on the market rather than the lancers themselves. The

main point of difference that the various manufacturers stress in marketing their lancing

devices is pain—with every manufacturer claiming that their lancing device is the least

painful to use.

To address the issue of pain, many manufacturers have turned to allowing the end user

the ability to adjust the “depth setting” on their device. Essentially, the depth setting is

intended to accommodate various skin thicknesses, so that the piercing force is

adjusted to match the texture of the user’s skin; a user with softer skin would use a

shallower depth setting, for instance, than one with thicker skin.

The second challenge manufacturers grapple with is that of the initiation mechanism for

the lancing device. As a point of clarification, most lancing devices on the market

operate based on energy storage and release from a loaded spring, or spring-like

material, with a button on the lancing device as the interface used by a patient to

unleash the loaded spring and initiate lancing. In general, a softer button press is

preferred, with the most successful lancing device manufacturers being ones that most

responsibly mange the balance between ease of execution and safety; while a softer

button press is easier on the patient, a button that is too sensitive increases the risk of

injury.

Intended Design:
With an understanding of the market landscape and how that interfaces with consumer

preference, the team’s design plan is to have a lancing device that is first intuitive to

use, safe and easy to handle, and less painfully executes the lancing operation.

To make the device intuitive to use, its operation will be modeled after existing and

familiar devices like the retractable-pen, a model that most of the thriving lancing

	
	
	
	

43	

devices leverage. For the purpose of ease of execution, loading configurations of the

spring will be investigated to determine which options best preserve the integrity of the

spring while allowing for a soft and safe button press for the initiation of lancing. Finally,

to address the challenge presented by the pain inherent in the lancing operation, the

team will look into even further refinement of the “depth settings” present in models of

lancing devices readily available in the market place and implement said refinements in

the team’s lancing device. There will also be consideration given to unorthodox

approaches like vibration, to be used as a numbing tool for the area to be pierced.

As a final note, while lancing devices existing currently in the marketplace do not appear

to be optimized for compactness, the teams lancing device will be designed with

portability as a key consideration, hence offering the team’s lancing device an edge in

the marketplace.

5.8.3 Test Strip Cartridge

5.9 Design and Operation of the Lancing Device

5.9.1 Requirements:

• Portability

• Compatibility with glucometer subsystem

• Compatibility with existing generic lancets

• Different settings to accommodate different skin thicknesses

5.9.2 Approach:

• The parts of the lancing device were modeled using Creo (commercially

available CAD software)

• Modeled parts were printed using 3D printers

o Makerbot Replicator 2X (Preliminary Prototyping)

o Fortus 250mc (Final Prototyping)

	
	
	
	

44	

5.9.3 Challenges:

• Poor resolution on the best available 3D printer (Fortus 250mc)

o Design scaled up to accommodate poor resolution on available 3D

printer

• Portability requirement compromised with scaled up prototype

• No injection molding resources available for manufacturing parts

o Part quality would see dramatic improvement with the use of the

injection molding approach

• Time constraint significantly limited number of iterations of initial design

o Limited time to react to poor resolution on 3D printer

§ Springs for ideally scaled model used for scaled up model

(non-ideal)

Final Design I:
Lancing device at ideal scale (No physical model built):
	
	
	
	
	
	
	
	
	
	
	
	 	
	
	
	
	
	
	
	
	
	

	
	
	
	

45	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Part Number Description
i1 Puller
i2 Top Cover
i3 Spring holder
i4 Inner Wall
i5 Outer Wall
i6 Bottom Cover
i7 Lancet holder
i8 Bottom Case
i9 Cap
i10 Trigger

Operation:
1. Secure generic lancet in Lancet holder (i7).

2. Engage spring by pulling the Puller (i1) until a clicking sound is heard.

3. Put finger at the end of the Bottom Case (i8) with the Cap (i9) off.

(i1
)	
(i2
)	
(i3
)	
(i4
)	
(i5
)	
(i6
)	
(i7
)	
(i8
)	

(i9
)	

(i10
)	

	
	
	
	

46	

4. Push the Trigger (i10) in to initiate lancing operation to break skin.

5. Take blood-glucose reading.

6. Remove lancet and dispose of it safely (i7).

Final Design II:
Lancing device at exaggerated scale for demonstration (Physical model printed

using Fortus 250mc):

(k1
)	

(k
3)	

(k4
)	
(k5
)	
(k6
)	

(k2
)	

	
	
	
	

47	

Part Number Description

k1 Puller

k2 Top Cover

k3 Spring

k4 Inner Case

k5 Lancet Holder

k6 Outer Case

Operation:
1. Secure generic lancet in Lancet holder (k5).

2. Engage spring by pulling the Puller (k1) until Red marking is revealed.

3. Twist Puller (k1) in either clockwise or counterclockwise direction for a

quarter of a circle.

4. Adjust Outer Case (k6) to desired depth to match skin thickness.

5. Put finger at the end of the Outer Case (k6).

6. Twist Puller in either clockwise or counterclockwise direction for a quarter

of a circle. This initiates lancing operation to break skin.

7. Take blood-glucose reading

8. Remove lancet and dispose of it safely (k5).

Glucometer	 Case	
	
Requirements:	

• Portability	
• Compatibility	 with	 Lancing	 device	 subsystem	 	
• Ability	 to	 hold	 all	 circuit	 components	
• Provide	 intuitive	 access	 to	 control	 interfaces	 (buttons	 etc.)	

	
	
	
	

48	

Approach:	
• The	 parts	 of	 the	 lancing	 device	 were	 modeled	 using	 Creo	 (commercially	 available	 CAD	

software)	
• Modeled	 parts	 were	 printed	 using	 3D	 printers	

o Makerbot	 Replicator	 2X	 (Preliminary	 Prototyping)	
o Fortus	 250mc	 (Final	 Prototyping)	

Challenges:	 	
• Poor	 resolution	 on	 the	 best	 available	 3D	 printer	 (Fortus	 250mc)	
• No	 injection	 molding	 resources	 available	 for	 manufacturing	 parts	

o Part	 quality	 would	 see	 dramatic	 improvement	 with	 the	 use	 of	 the	 injection	 molding	
approach	

• Time	 constraint	 significantly	 limited	 number	 of	 iterations	 of	 initial	 design	 	
o Limited	 time	 to	 react	 to	 poor	 resolution	 on	 3D	 printer	

	
	
Final	 Design:	

	
	
	
	
	
	
	
	
	
	

	
	
	
	

49	

	
	
	
	
	
	
	
	
	
	
	
	
	 	 	
	
	
	
	
	
	
	
	
Part	 Number	 Description	
b1	 Top	 Cover	
b2	 Circuit	 Housing	
b3	 Battery	 Cover	
b4	 Test	 Strip	 Holder	
	
Operation:	
Readings	

1. Securely	 insert	 test	 strip	 into	 test	 Strip	 holder	 (b4).	 	
2. Observe	 readings	 on	 LED	 screen.	 	

Replacing	 Battery	
1. Remove	 battery	 cover	 (b3).	 	
2. Replace	 battery.	
3. Reinstall	 Battery	 Cover	 (b3).	

	

5.10 Power

The glucometer design requires that it be compact and mobile. Therefore, a small

button battery would be needed in order to meet these requirements. We originally

settled on CR2330 lithium button cell battery. It’s 3 volts, 265 mAh with a small 23.3

(b1
)	

(b2
)	

(b3
)	

(b4
)	

	
	
	
	

50	

mm diameter. During the board design process, we realized that the board size that we

were targeting was not going to happen. The boards were going to be larger than we

had originally planned. This presented an opportunity to rethink the CR2330 battery.

The larger CR2450 has a much higher capacity, but still fits within the new board size.

It’s still 3 volts, but its capacity is 620 mAh, which will double the lifetime.

The battery lifetime of the glucometer was calculated by measuring the current during

for a full cycle and finding the average. The average current while in use is 58 mA, and

1 mA while in sleep mode. The average time the device is on per use is 2 minutes.

Device is expected to be used 5 to 10 times a day, and will be reviewed several times a

time. We chose a conservative 15 times a day. That means that every day the device

uses 29 mAh while in use and 23.5 mAh in sleep mode. The device will last around 12

days with a power use of 52.5 mAh per day.

6. System Integration Testing

6.1. Subsystem Integration Testing

6.1.1 Hardware Subsystems

	
The various subsystems were systematically tested to ensure proper operation. Each

subsystem was tested independently, and then gradually integrated with one another.

The glucometer circuit was tested by using a full cartridge of test strips and the two

levels of control solution purchased and described in detail in section 5.3. The blood

sugar values displayed on the LCD after every use of a test strip was checked to ensure

that it remained between the two ranges of the control solutions (40-85 mg/dl and 240-

340 mg/dl). The values were consistently within range, varying slightly from test strip to

test strip but remaining within the given range. We noticed that the values on the lower

range were closer to the higher part of the range, with numbers consistently in the 70’s

and 80’s. This is due to the fact that our best-fit line for our regression formula,

explained in detail in section 5.3.3, was slightly above the data points taken for that

	
	
	
	

51	

control solution. Thus, our glucometer system performed as expected and the errors

were accounted for due to the lack of access to blood testing laboratory.

The BLE transfer system was tested using the Nordic Semiconductors application,

available from the app store, before it was integrated with the Android application. This

application allowed data to be both sent and received.

EEPROM was tested using the USBee Suite logic analyzer. All of the functions were

individually tested by reading the MOSI and MISO of the SPI ports starting with the

basic read/write functions. After that, the more complex functions could be tested by

seeing that the correct integers were being written and read back from the memory

bank.

6.1.2 Software Subsystems
In order to demonstrate the databases functionality, one must be able to perform the

following tasks: successfully log into the web interface using their Google account, view

a table of their glucometer reading data, and enter new readings into the database

which will appear on the above table. For further verification, one could log into the

database account and verify that the data is present and as the user specified.

It was quick and easy to test the functionality of the Bluetooth application. So with

regards to testing of the application, the Bluetooth board attempts to connect with a

device and then would send a value of 1 to any receiving and connected Bluetooth

device through the Rx channel. Note that the Bluetooth board had an LED screen to

determine the current state of the Bluetooth connection and transmission. At the start,

the LED will prompt the application to attempt to connect with the board. Once

connected, the LED will prompt a connected message. The application also has a

connected feedback text. The disconnected text at the top will change to connected

once the application connects with a device. Once connected, the LED will state that it

is attempting to transfer a value onto the connected the device. If the transfer

completes, then a completion message will appear and the value will appear in the

	
	
	
	

52	

center text of the phone. Otherwise, the transfer attempt will continue until terminated. If

connection or transferring failed, then there is likely an issue that needs to be resolved

using the troubleshooting steps outlined in the troubleshooting section. Now that the

value is on the phone, pressing the upload data button will upload the data onto the

Parse database with a proper timestamp. A successful upload will be prompted with a

data upload success message, whereas a failed upload will provide a data upload failed

message. The data should have no difficulty updating unless an internet connection is

not present.

In the case that measurements were completed without access to the internet, the

glucometer device will store the measurements. Once internet access is obtained, the

user can connect with the application and send all of the data stored on the glucometer

at once. Once the upload data button, all of that data will be uploaded and the buffer of

stored values will be uploaded. Note that all values are stored in a buffer on the phone

until the upload button is pressed. This makes it so that multiple measurements are

supported.

In order to verify and test the functionality of the data analytics and visualization of the

app, the app and charts page was run on varying devices. Through this we were able to

verify that the integrity of the application and the website does not vary device to device.

So essentially, we loaded the .apk on multiple Android phones with varying screen sizes

and made sure that the pages appeared fine on all phones. Had we had access to more

devices, further testing could be performed. To know that the charts were functioning,

merely interact with them. Attempt to change the filters around, use the slider, and so

on. If the data being visualized matches the data being entered, then the charts are

clearly working. Manual calculations may also be used to ensure the summary statistics

are valid calculations.

6.2. Design Requirement Demonstration
The finite state machines described in section 5.1 were tested by running through the

entire sequence and allowing for all the various paths to be taken (timeouts, bad BLE

	
	
	
	

53	

connection, etc.). The only path that was not fully tested was the EEPROM storage and

retrieval working with the Bluetooth system since we ran out of time before we were

able to integrate the two together. Testing the finite state machine in this manner

required that each subsystem was working properly, and demonstrates that the design

requirements were met.

7. User Manual

7.1 Hardware
1. Before interacting with the glucometer, the device should be sleep mode. In

sleep mode, the OLED screen will be off to preserve the battery.

2. To wake the glucometer, press one of the two buttons. Each button will perform

a different instruction. Button 1 will activate the device’s review mode, and

Button 2 will begin to sequence to take a blood reading.

3. When Button 1 is pushed, the device goes to review mode. In review mode, the

most recent blood reading will be displayed, and Buttons 1 and 2 become

cursors. Button 2 will move to the second most recent reading, then third most

recent, and so on. Button 1 will go in the opposite direction. It will go to the least

recent reading, then the second least recent, and so on. If only one reading is

present in the database, the value will not change at all. Wait for sleep mode to

return to other modes.

4. When Button 2 is pushed and the blood reading sequence has begun, the OLED

screen will read “Insert test strip and press button when ready.” The user should

follow these instructions and place a test strip in the slot on the side of the

device. Press Button 2 when the test strip is securely in the slot.

5. Next, the device will prompt the user to apply blood to the test strip. The user

should use the lancing device attached to the side of the device. Instructions for

the lancing device are below.

	
	
	
	

54	

6. The blood drop should be applied by slowly moving it to come in contact with the

thin edge of the test strip. The blood should NOT be placed on top of the test

strip because this will often cause a bad reading.

7. In the case of a bad reading, the device will display “Bad Reading” and go back

to the beginning of blood reading sequence. Refer back to #4.

8. If the reading is successful, the blood glucose number will be displayed on the

screen for 5 seconds. Afterwards, the device will prompt the user to open up the

smart phone app and connect via Bluetooth.

9. Once the device successfully connects to the app, a transfer of the data will

begin automatically. The OLED screen will keep the user updated to the status of

the transfer. When the transfer is completed, the device will show the blood

glucose value again for 5 seconds, and then go into sleep mode.

10. If the device is left stagnant for more than 30 seconds, the OLED screen will

show a 3 second count before returning to sleep mode. To prevent this, simply

push any button.

7.2 Lancing Device
1. Secure generic lancet in Lancet holder (k5).

2. Engage spring by pulling the Puller (k1) until Red marking is revealed.

3. Twist Puller (k1) in either clockwise or counterclockwise direction for a

quarter of a circle.

4. Adjust Outer Case (k6) to desired depth to match skin thickness.

5. Put finger at the end of the Outer Case (k6).

6. Twist Puller in either clockwise or counterclockwise direction for a quarter

of a circle. This initiates lancing operation to break skin.

7. Take blood-glucose reading

8. Remove lancet and dispose of it safely (k5).

	

	
	
	
	

55	

7.3 Software
Installation of the glucometer reading and charts application requires a few simple

steps. First the apk file must be transferred onto the phone. This can be done by either

downloading and acquiring the apk file from the phone or transferring the apk file from a

computer into the phone using a mobile. Once the apk file is on the phone, merely open

the apk file in order to install the application on your phone. The installation process is

automated and will result in a Glucometer application appearing in your list of

applications. The application can now be opened and used.

An alternative installation method would be to compile the source code in Android

Studio and have Android Studio target the desired phone as the testing device. In order

to do this, connect the phone to your laptop with a USB-to-micro-USB cable and click

the run and compile button on Android Studio. This will install the application on the

device as well as open it.

To set up for a measurement, have the glucometer and the application reasonably close

to one another. Setting up the software side of the product requires one to merely open

and run the application. If the application is not available on the phone, follow the

directions in 7.1 to install the application. Installation of any other software requirements

are not necessary as long as a minimum of SDK 14 is installed (Ice_Cream_Sandwich).

This SDK was released in 2011, so any Android phone which has been updated before

that time will have no issues. To perform the reading, log in or create an account on the

startup activity. This will lead to the reading screen. Now perform the measurement on

the glucometer and attempt to send the data to the application. Make sure that both

devices return a connected state. The phone will now receive any reading streamed

data.

The first troubleshooting step to perform in the event the application is having difficulty

is to restart the phone. There is the potential that another Bluetooth-based application is

	
	
	
	

56	

interfering with the glucometer application or some running process on the phone is

causing issues. The second measure would be to uninstall the application from the

phone and reinstall it. It may be possible that the apk install failed and a fresh install will

remove any issues.

If issues still persist, not that a few conditions on the phone have to be met for the

application to be properly running. Firstly, ensure that Bluetooth is enabled on the

phone. In order to perform a Bluetooth transmission, it is important that Bluetooth is

actually enabled on the phone. Generally, to enable Bluetooth on a smartphone, drag

the top bar down and make sure the Bluetooth button or tab appears active. If it is

inactive, tap the Bluetooth icon to activate it. Secondly, ensure that the internet is active.

While the internet is not necessary for receiving the reading, if you are receiving a “data

upload failed” message, then this means the app was unable to connect to the parse

servers via the internet. As a result, follow a similar procedure as the Bluetooth enabling

procedure and turn on the internet on the phone. A third potential issue may be that you

refused to allow the application access to Bluetooth or internet. To get around this

issue, reinstall the application and make sure to accept when prompted whether the

application should be allowed to access Bluetooth or internet.

Now if the issue is related to the reading not being read, there may be a couple potential

problems in addition to the Bluetooth enabled and allowed status. To send a proper

reading, the glucometer measurement device must be reasonably close to the mobile

device. Try closing the distance between the glucometer and the phone and retrying the

measurement. Another potential issue may be interference or another device

accidentally pairing with the glucometer. If this issue arises, attempt to take the

measurement in a more private area or try to turn off other Bluetooth devices such as

another phone or laptops.

More advanced troubleshooting of the application will require interaction with this source

code. This method will require one to perform the alternative installation method, which

	
	
	
	

57	

involves running Android Studio, connecting the phone to the computer, and compiling

the application onto the phone. Doing this will allow the user to run the application while

seeing the status of each action in the logcat. The logcat will record any errors and alert

them to the user. This method is not recommended unless the user is advanced and is

well aware of the inner workings of the application.

8. To-Market Design Changes

8.1 Software
Improvements to the product would include increasing the number of mobile platforms

compatible with the product. Currently, the Bluetooth reading portion of the product only

works on Android-based mobile products. Making it compatible with iOS and Windows

would drastically increase the accessibility and thus popularity of the product. In order to

do this, either the Bluetooth reading portion of the application must be ported to become

a web application or native versions for iOS and Windows must be made.

Other improvements may be polishing of the application. For example, the login screen

could include a forget password/username feature. E-mail verification could also be a

feature to prevent an excessive amount of fake usernames from being created. The

application could also have reminder features. For example, you could schedule the

regular time you would normally take a blood sugar measurement and then the app

would the phone vibrate to remind you to take the measurement.

Additionally, the application could go into more detail about what the user is eating

rather than just consider eating as a general activity. As a result the application would

simultaneously double up as a diabetes dieting application. The feature to search for

and connect to nearby healthcare providers may also be effective for diabetes care.

	
	
	
	

58	

8.2	 Hardware	

We have identified three areas for improvement of the device – form factor, user

interface, and battery life.

As this is an early prototype, there is much room for improvement in form factor. Ideally,

we would like to make the device both smaller and sleeker before releasing it to market.

To do this, we would need to progress from the current 3D printers to printers with more

precise capabilities. We would also like to incorporate a variety of options for attaching

the device beyond a simple wristband, including a waistband attachment and an

armband.

The mechanical system has a lot of room for improvement. For the scope of this year,

we focused on designing a compact lancing design. With the proper injection molding

process, our lancer would be close to its final design. For the main casing, we would

include a compartment for a day supply of test strips. This way, a diabetic would not

need to carry a separate test strip cartridge. This would be able to be designed with the

reduction in size for the board layout as described above.

The user interface, consisting of the LCD screen and the buttons, also has room for

improvement. Before releasing the product to market, we would like to improve this

interface by increasing the size of the display in order to display more information and

increasing the functionality of the buttons, possibly to cycle through previous glucose

readings and view the same summary statistics available in the application. This would

also require increased storage on the EEPROM.

Due to time constraints, we were unable to implement a system that monitors battery

life. This feature is a necessity before releasing the product to market. Additionally,

there are some improvements to be had in the power consumption of the device and

these changes would be made in order to improve battery life. An additional

consideration would be to utilize a rechargeable battery instead of the watch battery.

	
	
	
	

59	

The glucometer would need to be tested extensively to ensure accuracy. In order to do

this, a fully equipped blood-testing laboratory would be required. This would allow for a

more accurate regression formula to be created and help integrate the temperature into

the blood sugar readings. Significant US FDA testing would be required before the

glucometer would be allowed on the market.

One oversight in our project was the power. We used a 3 Volt button battery, but we

prototyped with 3.3 Volts. Also, the voltage slowly declines as the energy drains. Our

bias voltage for our ADC glucometer circuit needs to be at 3.3 volts to be accurate. In

the future, we would add a 5 Volt battery with a voltage regulator to deliver a constant

3.3 volts.

9. Conclusions
Our prototype design met initial requirements and is a promising first step towards

bringing this device to market. While there were some shortcomings in this iteration,

namely one of the PCBs not working and limited testing of the EEPROM, the prototype

operated in much the same manner as a final version of the product would be expected

to operate. In addition, the software and hardware components of the project

seamlessly interfaced with one another. There are certainly some changes to be made,

which are previously addressed in this report, but this iteration of the Little Vampire is a

successful first prototype and meets the initial outlined requirements.

	
	
	
	

60	

10. Appendices

Appendix A. Hardware Schematics and Board Layouts

A1. Top Board
	

	
	
	
	

61	

	
	
	
	

62	

A2. Bottom Board

	

	
	
	
	

63	

	
	
	
	

64	

Appendix B. Microcontroller Software Reference

Overall	 Main	 File:	 main.c	
	
Header	 Files	 (some	 include	 .c	 files	 to	 coincide	 with	 the	 header	 files	 but	 for	
sake	 of	 understanding	 the	 header	 files	 explain	 the	 functionality	 of	 the	
underlying	 .c	 file)	
	
General	 Code:	
ADHEADER.h	 	 -‐ADC	 code	
Button.h	 -‐Button	 Interrupt	 and	 Polling	 Code	
EEPROM.h	 -‐EEPROM	 Initialization	 and	 Implementation	 Code	
sleepMode.h	 -‐Sleep	 Mode	 (IDLE)	 Initialization	 and	 Implementation	 	
Timer.h	 -‐Timer	 initialization	 for	 1	 s	 timer2	 and	 60	 s	 timer3	
	
OLED	 CODE:	
lcd_main.h-‐Write	 to	 screen	 as	 well	 as	 Write	 Blood	 Sugar	 functions	 which	
	 	 	 	 	 	 	 	 creates	 bigger	 numbers	 to	 be	 used	 for	 displaying	 the	 blood	 	
	 	 	 	 	 	 	 	 sugar	
PmodOled.h-‐OLED	 initialization	 and	 Pinouts	
	
Bluetooth	 Code:	
Nrf8001	 (folder)	 main	 file	 used	 and	 modified:	 ble4.h	
	
Note:	 The	 entire	 source	 code	 can	 be	 found	 on	 our	 website	 and	 the	 list	 above	 is	 by	 no	 means	
exhaustive.	 	 Our	 source	 code	 is	 thousands	 of	 lines	 of	 code	 and	 there	 are	 many	 files.	 	 The	
files	 highlighted	 above	 are	 the	 most	 important	 files	 in	 terms	 of	 understanding	 the	 high	 level	
application	 of	 each	 part	 of	 the	 code.	

Appendix C. App Software Reference

C1. Programming Languages
• For	 Android	 Development	

o Java	
o XML	

• For	 web	 development	
o HTML	
o CSS	
o JavaScript	

	
	
	
	

65	

C2. Integrated Development Environments (IDEs)
• Android	 Studio:	 Utilized	 to	 develop	 Android	 Applications.	 Includes	 a	 graphical	 and	 XML-‐

based	 UI	 for	 creating	 each	 activity.	
• Notepad++:	 Web	 environments	 were	 created	 in	 Notepad++,	 which	 is	 a	 smart	 text	 editor	 that	

features	 highlighting	 and	 recognition	 of	 common	 HTML,	 CSS,	 and	 JavaScript	 keywords.	

C3. Miscellaneous Software
• Apache2	 on	 Amazon	 Web	 Services	 to	 support	 the	 analytics	 website	
• Android	 OS	 to	 run	 the	 application	
• Application	 primarily	 tested	 on	 Samsung	 Galaxy	 S3+	 and	 LG	 LTE	 devices	

Appendix D. Electrical Parts Data Sheets

D1. Glucometer & General Parts

Microcontroller	 Data	 Sheet:	
http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf	
	
Operational	 Amplifiers:	
For	 buffer	 circuit:	 http://www.ti.com/lit/ds/symlink/opa379.pdf	
For	 current	 to	 voltage	 circuit:	 http://www.farnell.com/datasheets/1834039.pdf	
For	 differential	 op-‐amp	 circuit:	 http://www.ti.com/lit/ds/symlink/ina157.pdf	
	
Temperature	 Sensor:	
MCP9700AT-‐E/TT:	 http://ww1.microchip.com/downloads/en/DeviceDoc/21942e.pdf	
	
Design	 Reference	 Document:	
http://ww1.microchip.com/downloads/en/DeviceDoc/00001560A.pdf	
	
EEPROM:	
http://ww1.microchip.com/downloads/en/DeviceDoc/21191s.pdf	
	
LCD	 Controller:	
https://www.adafruit.com/datasheets/SSD1306.pdf	
	
Buttons:	
https://cdn.sparkfun.com/datasheets/Components/Switches/ADTS6-‐ADTSM-‐KTSC6.pdf	

	
	
	
	

66	

D2. Bluetooth Low Energy

	
Data sheets supplied to us via Sakia thus no online reference but included in our folder
on our website.
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

67	

Appendix E. Mechanical Parts Reference and Data Sheets
Final	 Design	 I:	
	
Part	 Number	 Schematic	
i1	 Puller	

	
i2	 Top	 Cover	

	
i4	 Inner	 Wall	

	
i5	 Outer	 Wall	

	

	
	
	
	

68	

i6	 Bottom	 Cover	

	
i8	 Bottom	 Case	

	
i9	 Cap	

	
i10	 Trigger	

	
	
	 	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

69	

Final	 Design	 I:	
Part	 Number	 Schematic	
k1	 Puller	

	
k2	 Top	 Cover	

	
k3	 Spring	

http://www.mcmaster.com/#9434k76/=x1rzlk	
k4	 Inner	 Case	

	
k5	 Lancet	 Holder	

	

	
	
	
	

70	

k6	 Outer	 Case	

	
	
	
	
	
	
	
	
	
Glucometer	 Case	
Part	 Number	 Description	
b1	 Top	 Cover	

	
b2	 Circuit	 Housing	

	

	
	
	
	

71	

b3	 Battery	 Cover	

	
	

